ojs2 has produced an error Message: WARNING: mkdir(): Permission denied In file: /var/www/html/ojs246_old/lib/pkp/classes/file/FileManager.inc.php At line: 306 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
ojs2 has produced an error Message: WARNING: assert(): Assertion failed In file: /var/www/html/ojs246_old/plugins/generic/usageStats/UsageStatsPlugin.inc.php At line: 308 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
Generalized Euler Function Graphs | Samaisong | งดใช้ระบบ 3-31 กค 66 Burapha Science Journal

Generalized Euler Function Graphs

Parinyaporn Samaisong, Supattra Chomchid, Siripong Sirisuk

Abstract


Let  and  be positive integers and . For a positive divisor  of , we define the generalized Euler function graph of type  to be the graph whose vertex set is the set of integers  in where the greatest common divisor of  and  is , and two vertices  and  are adjacent if and only if the greatest common divisor of  and  is . The generalized Euler function graph of type  is the Euler function graph which has already been studied. In this research, we focus on studying the generalized Euler function graphs of types  and . We explore properties of vertices, degree and connectivity of the graphs. Moreover, we present relationships among those graphs, relatively prime graphs and Eulerian graphs.

 

Keywords :  greatest common divisor ; relatively prime graph ; divisor graph


Full Text:

PDF

References


Burton, D.M. (1998). Elementary Number Theory. New York: MacGraw-Hill.

Garcia, P.G., & Ligh, S. (1983). A generalization of Euler's ϕ-Function. Fibonacci Quart., 21, 26-28.

Koshy, T. (2007). Elementary Number Theory with Applications. (2nd edition). Boston: Mass.

Madhavi, L. (2002). Studies on Domination Parameters and Enumeration of Cycles in Some Arithmetic Graphs.

Ph.D. Thesis. Tirupati: S.V. University.

Manjuri, M., & Maheswari, B. (2012). Matching dominating sets of Euler-Totient-Cayley graphs. IJCER., 2, 103-107.

Manjuri, M., & Maheswari, B. (2013). Clique dominating sets of Euler totient Cayley graphs. IOSR-JM., 4, 46-49.

Pomerance, C. (1983). On the longest simple path in the divisor graph. Congr. Numer., 40, 291-304.

Sangeetha, K.J., & Maheswari, B. (2015). Edge domination in Euler-Totient-Cayley graph. IJSER., 3, 14-17.

Shanmugavelan, S. (2017). The Euler function graph G(ϕ(n)). Int. J. Pure Appl. Math., 116, 45-48.

West, D.B. (2001). Introduction to Graph Theory. New Jersey: Prentice Hall.

Wilson, R.J. (1985). Introduction to Graph Theory. New York: Longman.


Refbacks

  • There are currently no refbacks.