ojs2 has produced an error Message: WARNING: mkdir(): Permission denied In file: /var/www/html/ojs246_old/lib/pkp/classes/file/FileManager.inc.php At line: 306 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
ojs2 has produced an error Message: WARNING: assert(): Assertion failed In file: /var/www/html/ojs246_old/plugins/generic/usageStats/UsageStatsPlugin.inc.php At line: 308 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
Electrochemistry of Silver/Metal Oxide-based Catalysts on Carbon Support for Cathode Electrode of Reducing Sugar Alkaline Fuel Cells | Suwanraksa | งดใช้ระบบ 3-31 กค 66 Burapha Science Journal

Electrochemistry of Silver/Metal Oxide-based Catalysts on Carbon Support for Cathode Electrode of Reducing Sugar Alkaline Fuel Cells

Kantrakorn Suwanraksa, Piyawat Masjod, Chakkrapong Chaiburi

Abstract


This study investigated the electrochemistry of silver/metal oxide-based catalysts on carbon support, AgVxOy/C, and AgMnxOy/C. In order to analyse the potential of catalysts in cathode electrodes for reducing sugar in alkaline fuel cell without an exchange membrane. The physical properties of the catalysts were investigated by scanning electron microscopy, and the quantity of elements in the catalysts was determined by energy dispersive x-ray spectroscopy. The electrochemical characteristics of the catalytic reduction reaction were measured by a cyclic voltammetry technique. It is found that in higher fuel concentrations the AgMnxOy/C catalyst had better catalytic activity than the AgVxOy/C catalyst. The maximum current density of the reduction peak for the AgMnxOy/C catalyst was -0.51 mA.cm-2 at -0.22 V. Although, the average particle size of AgMnxOy/C was larger than that of the AgVxOy/C catalyst.

Keywords : alloy catalysts, cathode, reducing sugar, alkaline fuel cells         


Full Text:

PDF

References


Ayyaru, S., Mahalingam, S., & Ahn, Y.-H. (2019). A non-noble V2O5 nanorods as an alternative cathode catalyst

for microbial fuel cell applications. International Journal of Hydrogen Energy, 44(10), 4974–4984.

Brouzgou, A., & Tsiakaras, P. (2015). Electrocatalysts for Glucose Electrooxidation Reaction: A Review. Topics in

Catalysis, 58(18), 1311–1327.

Chakkrapong, C. (2016). Decrease of fuel cell performance caused by coolant leakage. Doctoral dissertation

Institute of Chemical Engineering and Environmental Technology. Austria : Graz University of Technology.

Ghoreishi, K. B., Ghasemi, M., Rahimnejad, M., Yarmo, M. A., Daud, W. R. W., Asim, N., & Ismail, M. (2014).

Development and application of vanadium oxide/polyaniline composite as a novel cathode catalyst in microbial fuel cell. International Journal of Energy Research, 38(1), 70–77.

Karim, N. A., & Kamarudin, S. K. (2013). An overview on non-platinum cathode catalysts for direct methanol fuel

cell. Applied Energy, 103, 212–220.

Kim, Y., Kim, J., & Kim, D. H. (2018). Investigation on the enhanced catalytic activity of a Ni-promoted Pd/C

catalyst for formic acid dehydrogenation: Effects of preparation methods and Ni/Pd ratios. RSC Advances, 8(5), 2441–2448.

Kostowskyj, M. A., Kirk, D., & Thorpe, S. (2010). Ag and Ag–Mn nanowire catalysts for alkaline fuel cells.

International Journal of Hydrogen Energy, 35, 5666–5672.

Lu, Y., Wang, Y., & Chen, W. (2011). Silver nanorods for oxygen reduction: Strong effects of protecting ligand on

the electrocatalytic activity. Journal of Power Sources, 196(6), 3033–3038.

Noori, Md. T., Mukherjee, C. K., & Ghangrekar, M. M. (2017). Enhancing performance of microbial fuel cell by

using graphene supported V2O5-nanorod catalytic cathode. Electrochimica Acta, 228, 513–521.

Santiago, O., Navarro, E., Raso, M., & Leo, T. J. (2016). Review of implantable and external abiotically catalysed

glucose fuel cells and the differences between their membranes and catalysts. Applied Energy, 179, 497–522.

Yu, X., & Manthiram, A. (2018). Scalable Membraneless Direct Liquid Fuel Cells Based on a Catalyst-Selective

Strategy. ENERGY & ENVIRONMENTAL MATERIALS, 1(1), 13–19.

Zhang, G.-Q., Zhang, X.-G., & Wang, Y.-G. (2004). A new air electrode based on carbon nanotubes and Ag–

MnO2 for metal air electrochemical cells. Carbon, 42(15), 3097–3102.


Refbacks

  • There are currently no refbacks.