ojs2 has produced an error Message: WARNING: mkdir(): Permission denied In file: /var/www/html/ojs246_old/lib/pkp/classes/file/FileManager.inc.php At line: 306 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
ojs2 has produced an error Message: WARNING: assert(): Assertion failed In file: /var/www/html/ojs246_old/plugins/generic/usageStats/UsageStatsPlugin.inc.php At line: 308 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
Metal Ion Control the Selective Sensing of Oxalate Anion by Dinuclear Complexes under Indicator Displacement Strategy | Chatphueak | งดใช้ระบบ 3-31 กค 66 Burapha Science Journal

Metal Ion Control the Selective Sensing of Oxalate Anion by Dinuclear Complexes under Indicator Displacement Strategy

Nattawat Chatphueak, Sarayut Watchasit, Chomchai Suksai

Abstract


Two dinuclear complexes of Cu(II) and Zn(II) with bis(dipicolylamine) linked by a para-xylylene bridge, CuL1 and ZnL1 have been synthesized and characterized. Both compounds are applied as metal-based indicator displacement assay (IDA) receptors for anions using bromopyrogallol red (BPG) as sensing indicators in 80/20 (%v/v) acetronitrile/water solution buffered with 10 mM HEPES at pH 7.0. After addition of various anions to the solution of [CuL1•BPG] and [ZnL1•BPG] ensemble, the results showed that only [CuL1•BPG] could discriminate oxalate from other anions obviously resulting in the color change from blue-violet of ensemble to magenta color of free BPG. This result indicates that the nature of metal ion plays a crucial role to control the selective sensing of oxalate in this work. The quantitative detection of oxalate by [CuL1•BPG] ensemble was ranged from 20 – 50 µM, and a correlation coefficient (R2) = 0.995. The detection limit was 20 µM by the naked eye.

 

Keywords :  dinuclear complex ; indicator displacement assay ; oxalate ; naked eye ; ensemble


Full Text:

PDF

References


Binstead, R. A., Jung, B. & Zuberbühler, A. D. (2000). SPECFIT/32 Global analysis System, 3.0, Spectrum Software Associates, Marlborough, MA.

Cartery, C., Faguer, S., Karras, A., Cointault, O., Buscail, L. & Modesto, A. (2011). Oxalate nephropathy associated with chronic pancreatitis. Clinical Journal of the American Society of Nephrology, 6, 1895-1902.

Curiel, D., Más-Montoya, M. & Sánchez, G. (2015). Complexation and sensing of dicarboxylate anions and dicarboxylic acids, Coordination Chemistry Reviews, 284, 19-66.

Dey, N., Kumari, N., Bhagat, D., & Bhattacharya, S. (2018). Smart optical probe for ‘equipment-free’ detection of oxalate in biological fluids and plant-derived food items. Tetrahedron, 74, 4457-4465.

Gampp, H., Maeder, M., Meyer, C. J. & Zuberbuhler, A.D. (1986). Calculation of equilibrium constants from multiwavelength spectroscopic data—IV: Model-free least-squares refinement by use of evolving factor analysis. Talanta, 33, 943-951.

Gampp, H., Maeder, M., Meyer, C. J. & Zuberbuhler, A. D. (1985). Calculation of equilibrium constants from multiwavelength spectroscopic data—III: Model-free analysis of spectrophotometric and ESR titrations. Talanta, 32, 1133-1139.

Hönow, R., Simon, S. & Hesse, S. (2002). Interference-free sample preparation for the determination of plasma oxalate analyzed by HPLC-ER: preliminary results from calcium oxalate stone-formers and non-stone-formers. Clinica Chimica Acta, 318, 19-24.

Hu, M. & Feng, G. (2012). Highly selective and sensitive fluorescent sensing of oxalate in water. Chemical Communications, 48, 6951-6953.

Inoue, K., Aikawa, S. & Fukushima, Y. (2018). Colorimetric detection of oxalate in aqueous solution by a pyrogallol red-based Cu2+ complex. Luminescence, 33, 277-281.

Kalra, V. & Pundir, C. S. (2004). Quantification of urinary oxalate by immobilized oxalate oxidase of forage sorghum leaf. Indian Journal of Biotechnology, 3, 52-57.

Kasidas, G. P., & Rose, G. A. (1986). Measurement of plasma oxalate in healthy subjects and in patients with chronic renal failure using immobilised oxalate oxidase, Clinica Chimica Acta, 154, 49-58.

Lavigne, J. J. & Anslyn, E. V. (1999). Teaching old indicators new tricks: A colorimetric chemosensing ensemble for tartrate/malate in beverages. Angewandte Chemie International Edition, 38, 3666-3669.

Li, H., Chai, X., Chai, S. S., DeMartini, N., Zhan, H., & Fu, S. Determination of oxalate in black liquor by headspace gas chromatography. Journal of Chromatography A, 1192, 208-211.

Marengo, S. R. & Romani, A. M. P. (2008). Oxalate in renal stone disease: the terminal metabolite that just won't go away. Nature Clinical Practice Nephrology, 4, 368-377.

Merusi, C., Corradini, C., Cavazza, A., Borromei, C., & Salvadeo, P. (2010). Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal, Food Chemistry, 120, 615-620.

Muñoz, J. A., & Lopez-Mesas, M. (2010). Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis. Talanta, 81, 392-397.

Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250, 3118-3127.

Noblitt, S. D., Schwandner, F. M., Hering, S. V., Collett, J. L., & Henry, C. S. (2009). Determination of fecal sterols by gas chromatography–mass spectrometry with solid-phase extraction and injection-port derivatization. Journal of Chromatography A, 1216, 1503-1058.

Ogawa, Y., Miyazato, T., & Hatano, T. (2000). Oxalate and urinary stones. World Journal of Surgery, 24, 1154-1159.

Pundir, C. S., Thakur, M. & Satypal, P. (1998). Determination of urinary oxalate with Cl- and NO3- insensitive oxalate oxidase purified from sorghum leaf. Clinical Chemistry, 44, 1364-1365.

Pundir, C. S, Kuchhal, N. K., Thakur, M. & Satypal, P. (1998). Determination of plasma oxalate with chloride ion insensitive oxalate oxidase. Indian Journal of Biochemistry and Biophysics, 35, 120-122.

Rhaman, M., Fronczek, F. R., Powell, D. R. & Hossain, A. (2014). Colourimetric and fluorescent detection of oxalate in water by a new macrocycle-based dinuclear nickel complex: a remarkable red shift of the fluorescence band. Dalton Transactions, 43, 4618-4621.

Rodriguez, J. A., Hernandez, P., Salazar, V., Castrillejo, Y.& Barrado, E. (2012). Amperometric biosensor for oxalate determination in urine using sequential injection analysis. Molecules, 17, 8859-8871.

Su, J., Sun, Y.Q., Huo, F.J., Yanga, Y. T. & Yin, C. X. (2010). Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet. Analyst, 135, 2918-2923.

Suksai, C. & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32, 192-202.

Tang, L.-J. & Liu, M.-H. (2010). A new chemosensing ensemble for colorimetric detection of oxalate in water. Bulletin of the Korean Chemical Society, 31, 3159-3162.

Tang, L., Wu, D., Wen, X., Dai, X. & Zhong, K. (2014). A novel carbazole-based ratiometric fluorescent sensor for Zn2+ recognition through excimer formation and application of the resultant complex for colorimetric recognition of oxalate through IDAs. Tetrahedron, 70, 9118-9124.

Watchasit, S., Suktanarak, P., Suksai, C., Ruangpornvisuti, V. & Tuntulani, T. (2014). Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(ii) complex under an indicator displacement assay approach. Dalton Transactions, 43, 1470-14709.

Watchasit, S., Kaowliew, A., Suksai, C., Tuntulani, T., Ngeontae, W. & Pakawatchai, C. (2010). Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Letters, 51, 3398-3402.

Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J. & Anslyn, E. V. (2001). Teaching old indicators new tricks. Accounts of Chemical Research, 34, 963-972.

Worramongkona, P., Seeda, K., Phansomboon, P., Ratnarathorn, N., Chailapakul, O. & Dungchai, W. (2018). A simple paper-based colorimetric device for rapid and sensitive urinary oxalate determinations. Analytical Science, 34, 103-108.


Refbacks

  • There are currently no refbacks.