Expression of Cellulose and Lignin Biosynthetic Genes and Responses of Five Napier Grass Hybrids under Salt Stress
Abstract
Napier grass is a plant that has a high potential for bioethanol production. Currently, there are many hybrids of Napier grass (Pennisetum Hybrids) which each hybrid may have different lignocellulose quality and differ in its tolerance and response mechanisms to salinity stress. Therefore, this research aims to study the effect of salinity on the physiological and anatomical responses and examines the expression of cellulose (CesA1, CesA2, CesA3, CesA4, CesA5 and CesA7) and lignin (CAD and PAL) associated genes using reverse transcription PCR (RT-PCR) technique in order to obtain a guideline for selecting Napier grass that can be grown in saline soil and suitable for bioethanol production. The results showed that when considering the ability to maintain the amount of chlorophyll pigments and root characteristics after receiving salinity, Alafal (AF), Napier Yak Lampang (NL) and Napier Phetchaboon (NP) were able to tolerate salinity better than Napier Taiwan A25 (NT) and Napier Ma-Ji-Ro (MJ), respectively. The level of expression of genes in the AF, salt tolerance hybrid, is likely to increase cellulose synthesis (CesA2, CesA3 and CesA7) but produce less lignin (CAD) under high salinity conditions. Thus, AF may be the most suitable hybrid for bioethanol production. However, the expression level of cellulose and lignin associated genes in leaves of all five hybrids is not directly related with salinity tolerance.
Keywords : bioethanol, cellulose synthase, lignocellulose, Pennisetum hybrids, salt tolerance
Full Text:
PDFReferences
AL-Shoaibi, A.A. (2008). Photosynthetic response of elephant grass (Pennisetum purpureum) to NaCl salinity. Journal of Biological Sciences, 8, 610-615.
Basso, V., Machado, J.C., da Silva Lédo, F.J., da Costa Carneiro, J., Fontana, R.C., Dillon, A.J.P., & Camassola, M. (2014). Different elephant grass (Pennisetum purpureum) accessions as substrates for enzyme production for the hydrolysis of lignocellulosic materials. Biomass and Bioenergy, 71, 155-161.
Behr, M., Legay, S., Hausman, J.F., & Guerriero, G. (2015). Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. International journal of molecular sciences, 16(7), 16104-16124.
Cha-um, S., Nhung, N.T.H., & Kirdmanee, C. (2010) Effect of mannitol- and salt-induced iso-osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L. spp. indica). Pakistan Journal of Botany, 42(2), 927-941.
Gimeno, J., Eattock, N., Van Deynze, A., & Blumwald, E. (2014). Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PloS ONE, 9, 1-12.
Guerriero, G., Legay, S., & Hausman, J.F. (2014). Alfalfa cellulose synthase gene expression under abiotic stress: a Hitchhiker’s guide to RT-qPCR normalization. PLoS ONE, 9, 1-13.
Hu, G., Liu, Y., Zhang, X., Yao, F., Huang, Y., Ervin, E. H., & Zhao, B. (2015). Physiological evaluation of alkali-salt tolerance of thirty switchgrass (Panicum virgatum) lines. PLoS ONE, 10, 1-17.
Kandel, R., Singh, H.P., Singh, B.P., Harris-Shultz, K.R., & Anderson, W.F. (2016). Assessment of genetic diversity in Napier grass (Pennisetum purpureum Schum.) using microsatellite, single-nucleotide polymorphism and insertion-deletion markers from pearl millet (Pennisetum glaucum [L.] R. Br.). Plant Molecular Biology Reporter, 34, 265-272.
Kleima, F. J., Hobe, S., Calkoen, F., Urbanus, M. L., Peterman, E. J. G., van Grondelle, R., Paulsen, H., & van Amerongen, H. (1999). Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry, 38, 6587-6596.
Le Gall, H., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4, 112-166.
Li, X.J., Yang, M.F., Chen, H., Qu, L.Q., Chen, F., & Shen, S.H. (2010). Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(4), 929-940.
Li, Y., Zhang, Y., Zheng, H., Du, J., Zhang, H., Wu, J., & Huang, H. (2015). Preliminary evaluation of five elephant grass cultivars harvested at different time for sugar production. Chinese Journal of Chemical Engineering, 23, 1188-1193.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in enzymology, 148, 350-382.
Loedkunchotipat, K., Desclaux, S.S., & Maksup, S. (2015). Expression analysis of cellulose synthase and phenylalanine ammonia-lyase genes in Napier grass hybrids (Pennisetum hybrid). Thai Journal of Genetics, 8, 167-174. (in Thai)
Maksup, S., Supaibulwatana, K., & Selvaraj, G. (2013). High-quality reference genes for quantifying the transcriptional responses of Oryza sativa L. (ssp. indica and japonica) to abiotic stress conditions. Chinese Science Bulletin, 58, 1919-1930.
Mane, A.V., Karadge, B.A., & Samant, J.S. (2010). Salt stress induced alteration in photosynthetic pigments and polyphenols of Pennisetum alopecuroides (L.). Journal of Ecophysiology and Occupational Health, 10,
-182.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
Negawo, A., Teshome, A., Kumar, A., Hanson, J., & Jones, C. (2017). Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy, 7, 1-21.
Polprasert, S. (2014). Pretreatment of lignocellulosic materials for ethanol production. Thai Journal of Science and Technology, 22(5), 641-649. (in Thai)
Ra, K., Shiotsu, F., Abe, J., & Morita, S. (2012). Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production. Biomass and Bioenergy, 37, 330-334.
Shabala, S.N., Shabala, S.I., Martynenko, A.I., Babourina, O., & Newman, I.A. (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. Australian Journal of Plant Physiology, 25, 609-616.
Shen, H., Mazarei, M., Hisano, H., Escamilla-Trevino, L., Fu, C., Pu, Y., … Dixon, R.A. (2013). A genomics approach to deciphering lignin biosynthesis in switchgrass. The Plant Cell, 25(11), 4342-4361.
Turano, B., Tiwari, U. P., & Jha, R. (2016). Growth and nutritional evaluation of Napier grass hybrids as forage for ruminants. Tropical Grasslands-Forrajes Tropicales, 4, 168-178.
Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153, 895-905.
Wang, T., McFarlane, H.E., & Persson, S. (2016). The impact of abiotic factors on cellulose synthesis. Journal of Experimental Botany, 67, 543-552.
Wanichananan, P., Kirdmanee, C., & Vutiyano, C. (2003). Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt tolerance in aromatic rice (Oryza sativa L.). Science Asia,
, 333-339.
Yasuda, M., Ishii, Y., & Ohta, K. (2014). Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: pretreatment, saccharification, and fermentation. Biotechnology and Bioprocess Engineering, 19, 943-950.
Zhao, Q., Zhang, H., Wang, T., Chen, S., & Dai, S. (2013). Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of proteomics, 82, 230-253.
Refbacks
- There are currently no refbacks.