ojs2 has produced an error Message: WARNING: mkdir(): Permission denied In file: /var/www/html/ojs246_old/lib/pkp/classes/file/FileManager.inc.php At line: 306 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
ojs2 has produced an error Message: WARNING: assert(): Assertion failed In file: /var/www/html/ojs246_old/plugins/generic/usageStats/UsageStatsPlugin.inc.php At line: 308 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
Development of Multi-Assay Paper-Based Devices for Analysis of Antioxidant Activity | Phuangbanlang | งดใช้ระบบ 3-31 กค 66 Burapha Science Journal

Development of Multi-Assay Paper-Based Devices for Analysis of Antioxidant Activity

Chanoknan Phuangbanlang, Yupaporn Sameenoi

Abstract


This work developed a paper-based device for simultaneous determination of multiple antioxidant activity assays including the cupric reducing antioxidant capacity (CUPRAC) assay, the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonate) radical cation (ABTS) assay. The device composed of a central sample zone connected to four detection zones to accommodate three antioxidant assays and a sample blank measurement. Antioxidant activity analysis was achieved by dropping the samples onto the sample zone to flow to the detection zones containing the stored reagents for each antioxidant assay making the change in color that was measured using image J software. The analysis of gallic acid antioxidant standard with CUPRAC, ABTS, and DPPH assay gave the calibration curve in the linear ranges of 1-6 mM, 20-150 µM, and 3-13 mM, respectively, the relative standard deviation from the repetitive analysis of gallic acid at the concentrations in the linear range are 0.70-1.61%, 0.91-4.04% and 1.39-4.91% (n=5), respectively, and a limit of detection of 1 mM 1.10 µM and 1.30 mM, respectively. These preliminary results indicated that the developed paper-based device provided for the analysis of multiple antioxidant assays at the same time with low analysis time and cost, low reagent consumption and is promising to use for antioxidant activity in real samples.

 

Keywords:  multi-assay analysis, antioxidant activity, antioxidant, paper-based devices

 


Full Text:

PDF

References


Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-printed microfluidic multianalyte chemical sensing paper.

Analytical Chemistry, 80(18), 6928-6934.

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary

polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of

neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.

Awika, J. M., Rooney, L. W., Wu, X., Prior, R. L., & Cisneros-Zevallos, L. (2003). Screening methods to measure

antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and

Food Chemistry, 51(23), 6657-6662

Bener, M., Özyürek, M., Güçlü, K., & Apak, R. (2013). Novel optical fiber reflectometric cuprac sensor for total

antioxidant capacity measurement of food extracts and biological samples. Journal of Agricultural and

Food Chemistry, 61(35), 8381-8388

Benzie, I. F., & Strain, J. J. (1999). [2] Ferric reducing/antioxidant power assay: Direct measure of total

antioxidant activity of biological fluids and modified version for simultaneous measurement of total

antioxidant power and ascorbic acid concentration. In Methods In Enzymology, 299, 15-27.

Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2002). Low-Cost Printing of Poly (dimethylsiloxane) Barriers

To Define Microchannels in Paper. J. Immunol. Methods, 266, 1-5.

Cardoso, T. M., Garcia, P. T., & Coltro, W. K. (2015). Colorimetric determination of nitrite in clinical, food and

environmental samples using microfluidic devices stamped in paper platforms. Analytical Methods,

(17), 7311-7317.

Cuendet, M., Hostettmann, K., Potterat, O., & Dyatmiko, W. (1997). Iridoid glucosides with free radical

scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4), 1144-1152.

Kondakçı, E., Özyürek, M., Güçlü, K., & Apak, R. (2013). Novel pro-oxidant activity assay for polyphenols,

vitamins C and E using a modified CUPRAC method. Talanta, 115, 583-589.

Fenton, E. M., Mascarenas, M. R., López, G. P., & Sibbett, S. S. (2008). Multiplex lateral-flow test strips

fabricated by two-dimensional shaping. ACS Applied Materials & Interfaces, 1(1), 124-129.

Garcia, E. J., Oldoni, T. L. C., Alencar, S. M. D., Reis, A., Loguercio, A. D., & Grande, R. H. M. (2012).

Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Brazilian

Dental Journal, 23(1), 22-27.

Ghiselli, A., Serafini, M., Maiani, G., Azzini, E., & Ferro-Luzzi, A. (1995). A fluorescence-based method for

measuring total plasma antioxidant capability. Free Radical Biology and Medicine, 18(1), 29-36.

Li, X., Tian, J., & Shen, W. (2010). Quantitative biomarker assay with microfluidic paper-based analytical

devices. Analytical and bioanalytical chemistry, 396(1), 495-501.

Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods:

Impact on human health. Pharmacognosy Reviews, 4(8), 118.

Lu, Y., Shi, W., & Jiang, L. (2009). Rapid prototyping of paper-based microfluidics with wax for low-cost,

portable bioassay. Electrophoresis, 30, 1-4.

Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned paper as a platform for

inexpensive, low‐volume, portable bioassays. Angewandte Chemie International Edition, 46(8),

-1320.

Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., & Whitesides, G. M. (2008). FLASH: a rapid method for

prototyping paper-based microfluidic devices. Lab on a Chip, 8(12), 2146-2150.

Martinez, A. W., Phillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the Developing World:

Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 82(1), 3-10.

Oliveira, S. D., Souza, G. A. D., Eckert, C. R., Silva, T. A., Sobral, E. S., Fávero, O. A., FerreiraII, M. J. P.,

RomoffII, P., & BaaderI, W. J. (2014). Evaluation of antiradical assays used in determining the

antioxidant capacity of pure compounds and plant extracts. Química Nova, 37(3), 497-503.

Özyürek, M., Güçlü, K., & Apak, R. (2011). The main and modified CUPRAC methods of antioxidant

measurement. TrAC Trends in Analytical Chemistry, 30(4), 652-664.

Pyrzynska, K., & Pękal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the

antioxidant capacity of food samples. Analytical Methods, 5(17), 4288-4295

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity

applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine,

(9-10), 1231-1237.

Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Koehler, K., Chailapakul, O., Henry, C. S., & Volckens, J.

(2012). Microfluidic paper-based analytical device for aerosol oxidative activity. Environmental Science

& Technology, 47(2), 932-940.

Steiner, M. S., Meier, R. J., Duerkop, A., & Wolfbeis, O. S. (2010). Chromogenic sensing of biogenic amines

using a chameleon probe and the red− green− blue readout of digital camera images. Analytical

chemistry, 82(20), 8402-8405.

Vella, S. J., Beattie, P., Cademartiri, R., Laromaine, A., Martinez, A. W., Phillips, S. T., Mirica, K. A., & Whitesides,

G. M. (2012). Measuring markers of liver function using a micropatterned paper device designed for

blood from a fingerstick. Analytical chemistry, 84(6), 2883-2891.

Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food

Chemistry, 44(3), 701-705.

Xie, J., & Schaich, K. M. (2014). Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for

antioxidant activity. Journal of Agricultural and Food Chemistry, 62(19), 4251-4260.


Refbacks

  • There are currently no refbacks.