ojs2 has produced an error Message: WARNING: mkdir(): Permission denied In file: /var/www/html/ojs246_old/lib/pkp/classes/file/FileManager.inc.php At line: 306 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
ojs2 has produced an error Message: WARNING: assert(): Assertion failed In file: /var/www/html/ojs246_old/plugins/generic/usageStats/UsageStatsPlugin.inc.php At line: 308 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
Strong Convergence Theorems for Mixed Equilibrium Problems and Uniformly Bregman Totally Quasi-Asymptotically Nonexpansive Multi-Valued Mappings in Reflexive Banach Spaces | Jantakarn | งดใช้ระบบ 3-31 กค 66 Burapha Science Journal

Strong Convergence Theorems for Mixed Equilibrium Problems and Uniformly Bregman Totally Quasi-Asymptotically Nonexpansive Multi-Valued Mappings in Reflexive Banach Spaces

Kittisak Jantakarn, Anchalee Kaewcharoen

Abstract


In this paper, we propose a new iterative method for finding common solutions of mixed equilibrium problems and common fixed points of uniformly Bregman totally quasi-asymptotically nonexpansive multi-valued mappings in reflexive Banach spaces and prove the strong convergence theorems under some suitable control conditions.

 

Keywords : mixed equilibrium problems, Bregman totally quasi-asymptotically nonexpansive multi-valued

                    mappings, reflexive Banach spaces.


Full Text:

PDF

References


Blum, E., & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. Math Stud, 63, 123-145.

Bregman, L.M. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput Math Math Phys, 7(3), 200-217.

Butnariu, D., & Iusem, A.N. (2000). Totally convex functions for fixed points computation and infinite dimensional optimization. Dordrecht: Kluwer Academic.

Butnariu, D., & Resmerita, E. (2006). Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr Appl Anal, Art ID: 84919.

Ceng, L.C., & Yao, J.C. (2008). A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J Comp Appl Math, 214(1), 186-201.

Censor, Y., & Lent, A. (1981). An iterative row-action method for interval convex programing. J Optim Theory Appl, 34(3), 321-353.

Chang, S.S., Wang, L., Wang, X.R., & Chan, C.K. (2013). Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces. Appl Math Comput, doi:10.1016/j.amc.2013.11.074.

Darvish, V. (2015). A new algorithm for mixed equilibrium problem and Bregman strongly nonexpansive mapping in Banach spaces. Math FA, 2015.

Kassay, G., Reich, S., & Sabach, S. (2011). Iterative methods for solving systems of variatio nal inequalities in reflexive Banach spaces. SIAM J Optim, 21(4), 1319-1344.

Kirk, W.A, & Massa, S. (1990). Remarks on asymptotic and Chebyshev centers. Houston J. Math, 16, 357–364.

Li, Y., & Liu, H. (2014). Strong convergence of hybrid Halpern iteration for Bregman totally quasi-asymptotically nonexpansive multi-valued mappings in reflexive Banach spaces with application. Fixed Point Theory Appl, 186.

Li, Y., Liu, H., & Zheng, K. (2013). Halpern's iteration for Bregman strongly nonexpansive multi-valued mappings in reflexive Banach spaces with application. Fixed Point Theory Appl, 197.

Nilsrakoo, W., & Saejung, S. (2011). Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces. Appl Math Comput, 217(14), 6577-6586.

Reich, S., & Sabach, S. (2010). Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer Funct Anal Optim, 31(1), 22-44.

Reich, S., & Sabach, S. (2010). Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal, 73(1), 122-135.

Zhu, S., & Huang, J. (2016). Strong convergence theorems for equilibrium problem and Bregman totally quasi-asymptotically nonexpansive mapping in Banach spaces. Acta Mathematica Scientia, 36B(5),

-1444.


Refbacks

  • There are currently no refbacks.