ojs2 has produced an error Message: WARNING: mkdir(): Permission denied In file: /var/www/html/ojs246_old/lib/pkp/classes/file/FileManager.inc.php At line: 306 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
ojs2 has produced an error Message: WARNING: assert(): Assertion failed In file: /var/www/html/ojs246_old/plugins/generic/usageStats/UsageStatsPlugin.inc.php At line: 308 Stacktrace: Server info: OS: Linux PHP Version: 5.6.33-0+deb8u1 Apache Version: Apache/2.4.10 (Debian) DB Driver: mysql DB server version: 5.7.27
Diffusion and Adsorption of CH4/CO2 Mixtures in Zn(tbip) Metal Organic Framework | Seehamart | งดใช้ระบบ 3-31 กค 66 Burapha Science Journal

Diffusion and Adsorption of CH4/CO2 Mixtures in Zn(tbip) Metal Organic Framework

Kompichit Seehamart, Pairot Moontragoon

Abstract


Molecular dynamics (MD) simulations were performed to investigate the self-diffusivities and the adsorption behavior of CH4 and CO2 for their equimolar mixtures in Zn(tbip), which is a metal organic framework (MOF) that has one-dimensional 4.5 -sized channels. The MD simulations yield the CH4 self-diffusivities ( ) are larger than the CO2 self-diffusivities ( ) at low concentrations, but  at high concentrations. Furthermore, analysis of center of mass distribution and radial distribution function (RDF) of guest molecules shows that CH4 is preferentially adsorbed at the surface of Zn(tbip) over CO2, and the adsorption for CH4 more increases as the total concentration increases. The diffusion selectivities ( ), defined by , were calculated giving the values are in the rage of 0.6-1.5. And the calculated  is different from the Knudsen selectivity, , where  and  are molar mass of CH4 and CO2 respectively, and the difference increased when CH4 has the  higher adsorption strength over CO2. In addition, the  at low concentrations and  at high concentrations show that Zn(tbip) can be used for separating CH4/CO2 mixture.    

 

Key words : molecular dynamics, metal organic framework, self-diffusion,  adsorption, gas mixture


Full Text:

PDF

References


Amirjalayer, S., Tafipolsky, M. & Schmid, R. (2007). Molecular Dynamics Simulation of Benzene Diffusion in

MOF-5: Importance of Lattice Dynamics. Angew. Chem. Int. Ed., 46, 463-466.

Babarao, R., Hu, Z. & Jiang, J.(2007). Storage and separation of CO2 and CH4 in Silicalite, C168 Schwarzite and

IRMOF-1: A comparative study from Montecarlo simulation. Langmuir, 23, 659-666.

Bastin, L., Barcia, P S., Hurtado, E. J., Silva, Jose A. C., Rodrigues, A. E. & Chen, B. (2008). A microporous metal-

organic framework for separation of CO2/N2 and CO2/CH4 by fixed-base adsorption. J. Phys. Chem. C, 112, 1575-1581.

Czaja, A.U., Trukhan, N. & Müller, U. (2009). Industrial applications of metal organic frameworks. Chem. Soc.

Rev, 38, 1284-1293.

Halddoupis, E., Watanabe, T., Nair, S. & Sholl, D. S. (2012). Quantifying large effects of framework flexibility in

MOFs: CH4 and CO2 in ZIF-8. Chem. Phys. Chem, 13, 3449-3452.

Houndonougbo, Y., Siger, C., He, N., Morris, W., Furukawa, H., Ray, K. G., Olmsted, D. L., Asta, M., Laird ,B. B.&

Yaghi, O. M.(2013). A combined experimental-computational investigation of methane adsorption and selectivity in a series of Isoreticular Zeolite Imidazolate Framework. J. Phys. Chem. C,117,10326-10335.

Keskin, S. & Sholl,. D. S. (2007). Screening metal-organic framework materials for membrane-based

methane/carbon dioxide separations. J. Phys. Chem. C, 111,14055-14059.

Keskin, S.,& Sholl, D. S. (2009). Assessment of a Metal-Organic Framework Membrane for Gas Separation Using

Atomically Calculation: CO2 CH4 N2 H2 Mixtures in MOF-5.Ind. Eng. Chem. Res, 48,914-922.

Keskin, S. (2011a). High CO2 Selectivity of a Mricoporous Metal –Imidazolate Framework: A Molecular Simulation

Study. Ind. Eng. Chem. Res, 50, 8230-8236.

Keskin, S. (2011b). Atomistic Simulations for Adsorption, Diffusion, and Separation of Gas Mixtures in Zeolite

Imidazolate Frameworks. J. Phys. Chem. C, 115, 800–807.

Krishna, R., van Baten, J.M., Garcia-Perez, E. & Calero, S. (2006). Diffusion of CH4 and CO2 in MFI, CHA and DDR

zeolites. Chemical physics letters, 429, 219-224.

Krishna, R. & van Baten, J.M. (2007). Using molecular for screening of zeolites for separation of CO2/CH4

mixtures. Chem. Eng. J, 133, 121-131.

Krishna, R. & van Baten, J.M. (2011a). Influence of adsorption on the diffusion selectivity for mixture permeation

across mesoporous membranes. J. memsci, 369, 545–549.

Krishna, R. & van Baten, J.M. (2011b). Investigating the Validity of the Knudsen Prescription for Diffusivities in a

Mesoporous Covalent Organic Framework. Ind. Eng. Chem. Res, 50, 7083–7087.

Liu, J., Keskin, S., Sholl, D.S. & Johnson, J.K. (2011). Molecular Simulations and Theoretical Predictions for

Adsorption and Diffusion of CH4/H2 and CO2/CH4 Mixtures in ZIFs. J. Phys. Chem. C, 115, 12560-12566.

Martin, M.G. & Siepmann, J.I. (1998).Transferable Potentials for Phase Equilibria. 1. United-Atom Description of

n-Alkanes. J. Phys. Chem. B, 102, 2569-2577.

Pan, L., Parker, B., Huang, X., Olson, D.H., Lee, J.Y. & Li, J. (2006).Zn(tbip) (H2-tbip) 5-tert-Butyl Isophthalic

Acid): A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability. J. AM. CHEM. SOC, 128, 4180-4181.

Pillai, R. S., Pinto, M. L., Pires, J., Jorge, M.& Gomes, J. R. B. (2014). Understanding gas adsorption selectivity in

IRMOF-8 using molecular simulation. ACS Appl. Mater. Interfaces, 7, 624-637.

Salles, F., Jobic, H., Devic, T., Guillerm, V., Serre, C., Koza, M. M., Ferry, G. & Maurin, G. (2013). Diffusion of

binary CO2/CH4 in the MIL-47(V) and MIL-53(Cr) metal-organic framework type solids: A combination of neutron scattering measurements and molecular dynamics simulations. J.Phys.Chem.C,117,1275-1284.

Seehamart, K., Nanok, T., Krishna, R., van Baten, J.M., Remsungnen, T. & Fritzsche, S. (2009). A Molecular

Dynamics investigation of the influence of framework flexibility on self-diffusivity of ethane in Zn(tbip) frameworks. Micro Meso Mater, 125, 97–100.

Seehamart, K., Nanok, T., Karger, J., Chmelik, C., Krishna, R. &Fritzsche, S. (2010). Investigating the reasons

for the significant influence of lattice flexibility on self-diffusivity of ethane in Zn(tbip). Micro Meso Mater, 130, 92–96.

Seehamart, K., Chmelik, C., Krishna, R. & Fritzsche, S. (2011). Molecular dynamics Investigation of the self-

diffusion of binary mixture diffusion in the metal-organic framework Zn(tbip) accounting for framework

flexibility. Micro Meso Mater, 143, 125–131.

Smith, W., Forester, T R., Todorov, I.T. &Leslie, M. (2006).THE DL_POLY_2 USER MANUAL. UK: CCLRC

Daresbury Laboratory.

Walton, K. S., Millward, A. R., Dubbeldam,. D., Frost, H., Low, J. J., Yaghi, M.& Snurr,. R. Q. (2008).

Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic framework.

J. AM.CHEM.SOC, 130, 406-407.

Wang, S., Yang, Q. & Zhong, C. (2008). Adsorption and separation of binary mixture in metal-organic framework

Cu-BTC: A computational study. Separation and Purification Technology. 60, 30-35.

Yaghi, O.M., O’Keeffe, M., Ockwing, N.W., Chae, H.K., Eddaoudi, M.& Kim, J. (2003). Reticular synthesis and the

design of new materials. Nature, 432, 705-714.

Yaghi, O.M. & Li, Q. (2009). Reticular Chemistry and Metal-Organic Framework for Clean Energy. MRS

BULLETIN, 34, 682-690.

Yang, Q. & Zhong, C. (2006). Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in

metal-Organic Frameworks. J. Phys. Chem. B, 110, 17776-17783.


Refbacks

  • There are currently no refbacks.