Palladium Nanoparticles Supported on Carbon Materials

Sakulsuk Unarunotai, Suppachai Srisantitham


Nowadays, heterogeneous catalysts are widely used as they can be conveniently separated from reaction mixtures, making such catalysts reusable. Also, using heterogeneous catalysts help decrease the amount of heavy metals released into the environment. Palladium-catalyzed reactions have proved to be of high importance in both laboratory and industry. Strategies on preparing palladium nanoparticles on various carbon materials, including reduced graphene oxide, graphene oxide, functionalized graphene oxide, activated carbon and nanodiamond, with aims to improve catalytic activity, selectivity and reusability, are introduced in this article. Moreover, an important role of the structure of reduced graphene oxide itself towards product selectivity is discussed.


Keywords :  palladium nanoparticles, carbon materials, graphene, nanodiamond, catalysis

Full Text:



Abdelaziz, R., Disci-Zayed, D., Hedayati, M.K., Pöhls, J.-H., Zillohu, A.U., Erkartal, B., Chakravadhanula, V.S.K., Duppel, V., Kienle, L., & Elbahri, M. (2013). Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nature Communications, 4, 2400.

Bartlett, P.N., Birkin, P.R., & Ghanem, M.A. (2000). Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chemical Communications, 0(17), 1671–1672.

Biying, A.O., Vangala, V.R., Chen, C.S., Stubs, L.P., Hosmane, N.S., & Yinghuai, Z. (2014). Cross-coupling reaction between arylboronic acids and carboranyl iodides catalyzed by graphene oxide (GO)-supported Pd(0) recyclable nanoparticles for the synthesis of carboranylaryl ketones. Dalton Transactions, 43,


Boddien, A., Loges, B., Junge, H., & Beller, M. (2008). Hydrogen generation at ambient conditions: Application in fuel cells. ChemSusChem, 1(8–9), 751–758.

Bratlie, K.M., Lee, H., Komvopoulos, K., Yang, P., & Somorjai, G.A. (2007). Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Letters, 7, 3097–3101.

Domínguez-Quintero, O., Martínez, S., Henríquez, Y., D’Ornelas, L., Krentzien, H., & Osuna, J. (2003). Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity. Journal of Molecular Catalysis A: Chemical, 197(1–2), 185–191.

Dreyer, D.R., Park, S., Bielawski, C.W., & Ruoff, R.S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.

Financial Times. (2017). Palladium enjoys hot streak and leaves platinum for dust. Retrieved February 12, 2018, from

Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

Greiner, N.R., Phillips, D.S., Johnson, J.D., & Volk, F. (1988). Diamonds in detonation soot. Nature, 333, 440–442.

Gupta, N., Ding, Y., Feng, Z., & Su, D. (2016). Palladium supported on nanodiamonds as an efficient catalyst for the hydrogenating deamination of benzonitrile and related compounds. ChemCatChem, 8(5), 922–928.

Jiang, Y., Chen, J., Zhang, J., Li, A., Zeng, Y., Zhou, F., Wang, G., & Wang, R. (2016). Ultralow loading palladium nanocatalysts prepared by atomic layer deposition on three-dimensional graphite-coated nickel foam to enhance the ethanol electro-oxidation reaction. RSC Advances, 6, 13207–13216.

Khan, F., Eswaramoorthy, M., & Rao, C.N.R. (2007). Macroporous silver monoliths using a simple surfactant. Solid State Sciences, 9(1), 27–31.

Lee, D.-W., Jin, M.-H., Lee, Y.-J., Park, J.-H., Lee, C.-B., & Park, J.-S. (2016). Reducing-agent-free instant synthesis of carbon-supported Pd catalysts in a green Leidenfrost droplet reactor and catalytic activity in formic acid dehydrogenation. Scientific Reports, 6, 26474.

Li, Y., Xu, L., Xu, B., Mao, Z., Xu, H., Zhong, Y., Zhang, L., Wang, B., & Sui, X. (2017). Cellulose sponge supported palladium nanoparticles as recyclable cross-coupling catalysts. ACS Applied Materials & Interfaces, 9(20), 17155–17162.

Lindlar, H. (1952). Ein neuer katalysator für selektive hydrierungen. Helvetica Chimica Acta, 35(2), 446–450.

Mochalin, V.N., Shenderova, O., Ho, D., & Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology, 7, 11–23.

Narayanan, R. & El-Sayed, M.A. (2003). Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. Journal of the American Chemical Society, 125(27), 8340–8347.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

Okitsu, K., Yue, A., Tanabe, S., & Matsumoto, H. (2000). Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chemistry of Materials, 12(10), 3006–3011.

Seechurn, C.C.C.J., Kitching, M.O., Colacot, T.J., & Snieckus, V. (2012). Palladium-catalyzed cross-coupling:

A historical contextual perspective to the 2010 Nobel Prize. Angewandte Chemie International Edition, 51(21), 5062–5085.

Shenderova, O., Koscheev, A., Zaripov, N., Petrov, I., Skryabin, Y., Detkov, P., Turner, S., & Tendeloo, G.V. (2011). Surface chemistry and properties of ozone-purified detonation nanodiamonds. Journal of Physical Chemistry C, 115(20), 9827–9837.

Siamaki, A.R., Khder, A.E.R.S., Abdelsayed, V., El-Shall, M.S., & Gupton, B.F. (2011). Microwave-assisted synthesis of palladium nanoparticles supported on graphene: A highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. Journal of Catalysis, 279(1), 1–11.

Singh, R.N. & Awasthi, R. (2011). Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation. Catalysis Science & Technology, 1, 778–783.

Song, F.-Z., Zhu, Q.-L., Tsumori, N., & Xu, Q. (2015). Diamine-alkalized reduced graphene oxide: Immobilization of sub-2 nm palladium nanoparticles and optimization of catalytic activity for dehydrogenation of formic acid. ACS Catalysis, 5(9), 5141–5144.

Wei, Z., Pan, R., Hou, Y., Yang, Y., & Liu, Y. (2015). Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1, 3-cyclohexanedione through giant -conjugate interactions. Scientific Reports, 5, 15664.

Welch, C.J., Albaneze-Walker, J., Leonard, W.R., Biba, M., DaSilva, J., Henderson, D., Laing, B., Mathre, D.J., Spencer, S., Bu, X., & Wang, T. (2005). Adsorbent screening for metal impurity removal in pharmaceutical process research. Organic Process Research & Development, 9(2), 198–205.

Yamamoto, S., Kinoshita, H., Hashimoto, H., & Nishina, Y. (2014). Facile preparation of Pd nanoparticles supported on single-layer graphene oxide and application for the Suzuki–Miyaura cross-coupling reaction. Nanoscale, 6, 6501–6505.


  • There are currently no refbacks.